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CONSERVATION DE LA MASSE ET DU SOLUTE
Exercice 6.3

On considere le passage sur roue dans lequel une plaque de plastique d'épaisseur e, initialement
a vitesse verticale, V, tourne a 90 degrés autour d'une roue de rayon R (voir figure) sans
glissement et a vitesse angulaire . La masse spécifique initiale du plastique est notée po. On
suppose que I’épaisseur de la plaque reste constante égale a e et que la déformation en entrée
de roue se fait linéairement entre les angles 6 =0 et 6 = 0, . Le champ de vitesse dans cette zone

s’écrit alors v = {R(l-ij + ri} ®€, pour 0<0<0,.
0 0

1. Ecrire I’équation de conservation de la masse en notant p la masse spécifique du plastique
et en supposant que celle-ci ne dépends pas de 1’angle 6.

2. Résoudre cette équation différentielle en notant po la masse spécifique en entrée de roue,

i.e. pour 6 =0.

En quels points la masse spécifique reste-t-elle constante ?

Que se passe-t-il en sortie de roue ?

5. Calculer le tenseur vitesse des déformations définit comme la partie symétrique du tenseur
gradient de vitesse.
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Passage sur roue d’un plastique avec eo = e.

V= {R(l-ei] +rei}coée pour 0<0<89,.

0 0

1.- Ecrire I’équation de conservation de la masse en notant p la masse spécifique du plastique
et en supposant que celle-ci ne dépends pas de 1’angle 6.

Voo = RwE et v, =rwe, pour R <r< Rte

Comme V, =v.€ =0, iln'y a pas de contraction radiale donc e = ¢,

et la matiére est donc mise en expansion, i.e. p diminue.
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2.- Résoudre cette équation différentielle en notant po la masse spécifique en entrée de roue, i.e.
pour 0 =0.

j <0 donc p diminue.
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P _ @(E—IJ avec p=p0en 6 =0.

o0 0,\r
l@_p = 2(5—1]: i(g—lj avec 0, = ot,
pot 0,\r to\r
=t, t=t,
[ d(inp) = Ii(g—ljdtZ(E—lj
o Sot\r r
L
In-2- :(E—lj soit p= poe(r ) diminue car (E—IJ <0.
Po r r

3.- En quels points la masse spécifique reste-t-elle constante ?
Enr=R, i.e. sur la roue de rayon R.

R R-R-¢ " .
NB:enr=R+te, p= poe['”e_l) = poe( R“] = poe['“e) ~ poe[Rj ~ P, (1—%) sie<R

4.- Que se passe-t-il en sortie de roue ?

En sortie de roue, I’évolution est inverse, i.e. la masse spécifique augmente pour reprendre sa
valeur initiale partout dans I’épaisseur de la feuille.

NB : en réalité, I’épaisseur e de la plaque va aussi varier ....

5.- Calculer le tenseur vitesse des déformations définit comme la partie symétrique du tenseur
gradient de vitesse. Attention, p =r dans cette formule.
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Exercice 6.6

On met en contact deux blocs métalliques en alliage AB de compositions différentes en
¢léments B et on dépose le tout dans un four de facon a activer la diffusion chimique. L’interface
entre les deux blocs se trouve en x = 0. On note c2 la concentration initiale uniforme en B du
bloc de gauche (x<0) et c1 la concentration du bloc de droite (x>0).

C
C:l

Evolution des profils de concentration avec la durée de diffusion : interdiffusion.

1. Ecrire I’équation que doit satisfaire la concentration en atome B, c(x,t), fonction de x et du
temps t. On note D le coefficient de diffusion chimique de 1’atome B.

oc __o°C

C(x,t) doit vérifier I’équation de Fick sans terme d’advection : o
X

. o 1 oo
2. La solution de I’équation ci-dessus est donnée par c(x,t) = ———— | ¢,(u)e *"* du ou co(u)
2/nDt I ’

= ¢(x,t=0) est le profil initial de concentration. Calculer alors la solution c(x,t) en faisant
2 ¢

——|e" du avec erf(o)=I1.

7

l 0 _(x-u) 0 _(x-u)
C(x,t)= ——| | c,e P dut|ce *P du| puisque c,(u)=c, pour u<0 et ¢, pouru>0.
2\/5("; 2 .([ 1 puisque ¢, 2 P 1 P

apparaitre la fonction erreur erf(x) =

X-u -du 1 o 2 f
On pose v = , dv= , ilvient C(x,t)= —=| - | c,e” dv- | ce’ dv
J4Dt J4Dt Jn l ’ I '

27 2
Or erf(w) = —Ie'v dv=1=—1=
Jrg

2]
Ainsi C(x,t) = %2(1 -erf( ﬁ )] + % (H—erf( ﬁ )j avec erf(x) = % I e du et erf(o0)=1

c,-C, X
erfl
2 ( V4Dt )

3. Que valent ¢(x=0,t) et c(x,t=0) ?

e dv+—.|.e dv

+
Coup= =2+

€<

erf(0)=

+c C
C(x=0,t) = 2 42412 2 concentration a l'interface

C-C,

+c
C(x,0) = 2 L2+ 2 erf(0)= 2 , concentration en tout x apres un temps infini

NB: on peut "suivre" le point de concentration ¢, (en fait ¢ a peine supérieure a c,)
en approximant erf(2) par 1:

+ -
“ 2C2 +8°% erf( )=1l1ie X soit x =4+/Dt

2 J m 2Dt

On trouve que la longuer de diffusion chimique varie comme ~/Dt.

C(x,t) = ¢,=

) si erf(——
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La fonction erf(x) pour x réel :

0.5+

erf(x)

0.5+

NB: on Vériﬁe mathématiquement la solution de I’équation de Fick sans terme de transport en
f(u,x,t
utilisant — I f(u,x,t)du J. gd

G’
Cx,t)= ——| C,(u)e " du : dérivée en temps
2\/nDt I ’

(x- u)® 1 +oo (X ll) (x- w)’
C,(u)e *Pt du+ C 4Dt duy
_[ ( ) \/ﬁ _[ 0( 4Dt A2

(XU) (xu)
1
C,(u)e ** du+ C, (u)(x-u)’e "t du
j (W) SDNR—I o (W)(x-u)
+o0 (xu)

1
C(x,t)= ——| C,(u)e *Pt du, seconde dérivée en x:
(= j ()

-1
4t D

2|} 2|

-1
4t~/7tD

oC _ el

C,(u)(x-u)e Pt du
8X 4Dt 7D I ( J(x-w)
azc _1 (x u) 1 +oo _(x—u)2
= C,(we ' du+————— [ C, (u)(x-u)’e ** du
x> 4Dt/nDt J (@) 8D*t*/nDt L o(xu)
0°C 1 LLS0R S L
D = C (we P du+————— | C, (u)(x-u)’e P du=—
x> 4t/aDt !O o(®) 8Dt>\/nDt !O o(Wx0) ot

C(x,t) est bien solution de 1’équation de Fick en 1D et sans transport.



	Conservation de la masse et du soluté
	Exercice 6.3
	Exercice 6.6

