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CONSERVATION DE LA MASSE ET DU SOLUTE 
Exercice 6.3 
 
On considère le passage sur roue dans lequel une plaque de plastique d'épaisseur e, initialement 
à vitesse verticale, V, tourne à 90 degrés autour d'une roue de rayon R (voir figure) sans 
glissement et à vitesse angulaire ω. La masse spécifique initiale du plastique est notée ρ0. On 
suppose que l’épaisseur de la plaque reste constante égale à e et que la déformation en entrée 
de roue se fait linéairement entre les angles 0θ = 0 et θ = θ . Le champ de vitesse dans cette zone 

s’écrit alors θ 0
0 0

θ θv = R 1-  + r ωe  pour 0 θ θ
θ θ

  
≤ ≤  

  

 . 

1. Ecrire l’équation de conservation de la masse en notant ρ la masse spécifique du plastique 
et en supposant que celle-ci ne dépends pas de l’angle θ. 

2. Résoudre cette équation différentielle en notant ρ0 la masse spécifique en entrée de roue, 
i.e. pour θ =0. 

3. En quels points la masse spécifique reste-t-elle constante ? 
4. Que se passe-t-il en sortie de roue ? 
5. Calculer le tenseur vitesse des déformations définit comme la partie symétrique du tenseur 

gradient de vitesse. 
 

 
Passage sur roue d’un plastique avec e0 = e. 

 

θ 0
0 0

θ θv = R 1-  + r ωe  pour 0 θ θ
θ θ

  
≤ ≤  

  

 . 

1.- Ecrire l’équation de conservation de la masse en notant ρ la masse spécifique du plastique 
et en supposant que celle-ci ne dépends pas de l’angle θ. 

0θ 0 θ θ θ θ0

r 0r

v  = Rωe  et  v  = rωe  pour R r  R+e

Comme  V  = v.e = 0, il n'y a pas de contraction radiale 
et la matière est donc mise en expansion, i.e. ρ diminue.

donc e = e
= = ≤ ≤

  

  

0 0 0

0

1+ div v  = 0 = +  = +  puisque ρ=ρ(r,t)
r r

ρω R r ρω R 0 = + - +  + 1-
r θ θ θ r

ρω R = 1  0 donc ρ diminue.
θ r

V V
t t t

t t

t

θ θρρ ρ ρ ρρ
θ θ

ρ ρ

ρ

∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

 ∂ ∂  =   ∂ ∂   
∂  − ≤ ∂  



 

2.- Résoudre cette équation différentielle en notant ρ0 la masse spécifique en entrée de roue, i.e. 
pour θ =0. 
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( )
0 0

0

0 0
0 0

t=t t=t

0t=0 t=0

R 1
r

0
0

ρω R = 1  avec  ρ=ρ0 en θ = 0.
θ r

1 ω R 1 R = 1  1  avec  θ ωt
ρ θ r t r

1 R Rd lnρ  = 1 dt = 1
t r r

ρ R Rln 1   soit   ρ = ρ   diminue car 
ρ r r

t

t

e

ρ

ρ

 − 
 

∂  − ∂  
∂    − = − =   ∂    

   − −   
   

 = − 
 

∫ ∫

1 0. − ≤ 
 

 

3.- En quels points la masse spécifique reste-t-elle constante ? 
En r = R, i.e. sur la roue de rayon R. 

R R-R-e -e -e-1
R+e R+e R+e R

0 0 0 0 0
eNB: en r = R+e,  ρ = ρ e  = ρ e  = ρ e    ρ e   ρ 1-   si e R
R

       
       
         ≈ ≈  

 
  

4.- Que se passe-t-il en sortie de roue ? 
En sortie de roue, l’évolution est inverse, i.e. la masse spécifique augmente pour reprendre sa 
valeur initiale partout dans l’épaisseur de la feuille. 
NB : en réalité, l’épaisseur e de la plaque va aussi varier …. 
 
5.- Calculer le tenseur vitesse des déformations définit comme la partie symétrique du tenseur 
gradient de vitesse. Attention, ρ = r dans cette formule. 

 
 

( )

( )

θ θ θ
0 0

θ θ
0

θ

0

θ θAvec  v = R 1-  + r ωe V r,θ e ,  
θ θ

V V1 10 - 0 0 θ - θ 02 r r 2
V1 Rω rε =  sym 0  = sym -1 0

r θ rθ R
0 0 00 0 0

  
=  

  
 ∂        ∂     ∂       ∂            

 


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Exercice 6.6 
On met en contact deux blocs métalliques en alliage AB de compositions différentes en 
éléments B et on dépose le tout dans un four de facon à activer la diffusion chimique. L’interface 
entre les deux blocs se trouve en x = 0. On note c2 la concentration initiale uniforme en B du 
bloc de gauche (x<0) et c1 la concentration du bloc de droite (x>0).  

 
1. Ecrire l’équation que doit satisfaire la concentration en atome B, c(x,t), fonction de x et du 

temps t. On note D le coefficient de diffusion chimique de l’atome B. 

C(x,t) doit vérifier l’équation de Fick sans terme d’advection : 
2

2

C C = D
t x

∂ ∂
∂ ∂

 

2. La solution de l’équation ci-dessus est donnée par
2+ (x-u)-

4Dt
0

-

1c(x,t) = c (u)e du 
2 πDt

∞

∞
∫ ou c0(u) 

= c(x,t=0) est le profil initial de concentration. Calculer alors la solution c(x,t) en faisant 

apparaitre la fonction erreur 2-u

0

2erf(x) e du   avec  erf( )=1
π

x

= ∞∫ . 

2 2

2 2

0 (x-u) (x-u)- -
4Dt 4Dt

2 1 0 2 1
- 0

x
4Dt

-v -v
2 1

x
4Dt

1C(x,t) = c e du+ c e du   puisque c (u)=c  pour u < 0 et c  pour u >0.
2 πDt

x-u -du 1On pose v = ,  dv = ,   il vient C(x,t) = c e dv- c e dv
4Dt 4Dt π

∞

∞

−∞

∞

 
  
 

 
 
− 

 

∫ ∫

∫ ∫

2 2 2

2

-v -v -v

0 0

-u2 1

0

1 2 1 2

2 2 2Or  erf( ) = e dv 1 e dv e dv
π π π

c cx x 2Ainsi  C(x,t) = 1-erf( ) + 1+erf( )   avec erf(x) e du et erf( )=1
2 24Dt 4Dt π

c +c c -c xC(x,t) = + erf( )
2 2 4Dt

x

x
x

∞ ∞



∞ = = +

    = ∞   
   

∫ ∫ ∫

∫

 

3. Que valent c(x=0,t) et c(x,t= )∞  ?  
1 2 1 2 1 2

1 2 1 2 1 2

1

c +c c -c c +cC(x=0,t) = + erf(0)= ,  concentration à l'interface 
2 2 2

c +c c -c c +cC(x, ) = + erf(0)= ,  concentration en tout x après un temps infini
2 2 2

NB: on peut "suivre" le point de concentration c

∞

1

1 2 1 2
1

 (en fait c à peine supérieure à c )
en approximant erf(2) par 1:

c +c c -c x x xC(x,t) = c = + erf( ) si erf( ) 1 i.e 1 soit x =4 Dt
2 2 4Dt 4Dt 2 Dt

On trouve que la longuer de diffusion chimique varie comme Dt.

=
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La fonction erf(x) pour x réel :  
 

 
 

NB: on vérifie mathématiquement la solution de l’équation de Fick sans terme de transport en 

utilisant 
+ +

- -

f(u,x,t) f(u,x,t)du = du
t t

∞ ∞

∞ ∞

∂ ∂
∂ ∂∫ ∫ . 

2

2 2

2

+ (x-u)-
4Dt

0
-

+ +(x-u) (x-u)2- -
4Dt 4Dt

0 0 2
- -

+ (x-u) (x-u- -24Dt
0 02

-

1C(x,t) = C (u)e du : dérivée en temps
2 πDt

-1 1 (x-u) =  C (u)e du + C (u) e du 
t 4Dt4t πDt 2 πDt

-1 1 =  C (u)e du + C (u)(x-u) e
t 4t πDt 8Dt πDt

C

C

∞

∞

∞ ∞

∞ ∞

∞

∞

∂
∂

∂
∂

∫

∫ ∫

∫
2+ )

4Dt

-

du
∞

∞
∫

 

2

2

2 2

+ (x-u)-
4Dt

0
-

+ (x-u)-
4Dt

0
-

+ +(x-u) (x-u)2 - -24Dt 4Dt
0 02 2 2

- -

2

2

1C(x,t) = C (u)e du , seconde dérivée en x:
2 πDt

-1 =  C (u)(x-u)e du 
x 4Dt πDt

-1 1 =  C (u)e du + C (u)(x-u) e du
4Dt πDt 8D t πDt

-1 =  

C

C
x

CD
x

∞

∞

∞

∞

∞ ∞

∞ ∞

∂
∂

∂
∂

∂
∂

∫

∫

∫ ∫
2 2+ +(x-u) (x-u)- -24Dt 4Dt

0 02
- -

1C (u)e du + C (u)(x-u) e du =
t4t πDt 8Dt πDt
C∞ ∞

∞ ∞

∂
∂∫ ∫

 

C(x,t) est bien solution de l’équation de Fick en 1D et sans transport. 
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